If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-29=0
a = 1; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·1·(-29)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{29}}{2*1}=\frac{0-2\sqrt{29}}{2} =-\frac{2\sqrt{29}}{2} =-\sqrt{29} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{29}}{2*1}=\frac{0+2\sqrt{29}}{2} =\frac{2\sqrt{29}}{2} =\sqrt{29} $
| 4n+3-2n-7=20 | | 11d-9d=5d+28 | | 1.2x-5.3=7x-3.7 | | F(10)=2x-3 | | (9x+2)=(2x+20) | | F(x)=110 | | (9x+2)=(5x-18) | | 5(x+4)=3x=28 | | (2x-2)+(4x+2)=180 | | 15=7(4p+1)+8(1+6p) | | (2x-29)+(7x+2)=180 | | (2x-29)=(7x+2) | | (5x+24)=(6x-6) | | 3(x-2)^2=66 | | (3x-23)=(7x-7) | | (3x-23)=(7x07) | | (5x+15)+(3x+15)=180 | | F=9/2(n-20) | | (5x+15)=(3x+15) | | (2x+22)=(4x+2) | | 7x=9=8x-8 | | (7x+9)+(8x-8)=180 | | 7x+9+8x-8=180 | | (x-18)=(6x+2) | | y+113=180 | | (12+2x)/(15+x)=1.1 | | y+121=180 | | (1/2)x^2=2 | | 102=(1+2k) | | y+141=180 | | 5^(3x+4)=(5^(x))/(25) | | 5m+9=15=3m |